"This new concept is, potentially, as drastic an enlargement of our cosmic perspective as the shift from pre-Copernican ideas to the realization that the Earth is orbiting a typical star on the edge of the Milky Way." Sir Martin Rees, physicist, Cambridge University, Astronomer Royal of Great Britain.

The many worlds interpretation of quantum mechanics is the idea that all possible alternate histories of the universe actually exist. At every point in time, the universe splits into a multitude of existences in which every possible outcome of each quantum process actually happens.The reason many physicists love the many worlds idea is that it explains away all the strange paradoxes of quantum mechanics.

Putting the many world interpretation aside for a moment, another strange idea in modern physics is the idea that our universe was born along with a large, possibly infinite, number of other universes. So our cosmos is just one tiny corner of a much larger multiverse.

Susskind and Bousso have put forward the idea that the multiverse and the many worlds interpretation of quantum mechanics are formally equivalent, but if both quantum mechanics and the multiverse take special forms.

Let's take quantum mechanics first. Susskind and Bousso propose that it is possible to verify the predictions of quantum mechanics. In theory, it could be done if an observer could perform an infinite number of experiments and observe the outcome of them all, which is known as the supersymmetric multiverse with vanishing cosmological constant.

If the universe takes this form, then it is possible to carry out an infinite number of experiments within the causal horizon of each other. At each instant in time, an infinite (or very large) number of experiments take place within the causal horizon of each other. As observers, we are capable of seeing the outcome of any of these experiments but we actually follow only one.

Bousso and Susskind argue that since the many worlds interpretation is possible only in their supersymmetric multiverse, they must be equivalent. "We argue that the global multiverse is a representation of the many-worlds in a single geometry," they say, calling this new idea the multiverse interpretation of quantum mechanics.

But we have now entered the realm of what mathematical physicist Peter Woit of Columbia calls "Not Even Wrong, because the theory lacks is a testable prediction that would help physicists distinguish it experimentally from other theories of the universe. And without this crucial element, the multiverse interpretation of quantum mechanics is little more than philosophy, according to Woit.

What this new supersymmetric multiverse interpretation does have is a simplicity-- it's neat and elegant that the many worlds and the multiverse are equivalent. Ockham's Razor is fulfilled and no doubt, many quantum physicists delight in what appears to be an exciting. plausible interpretation of ultimate if currently untestable, reality.

Ref: http://bit.ly/1aH2Cwh: The Multiverse Interpretation of Quantum Mechanics

## No comments:

## Post a Comment