Friday, 13 February 2015

NASA VIDEO: Close-Up of Pluto's Moon Charon --Does It Harbor a Buried Ocean?


6a00d8341bf7f753ef01a511cd6a10970c-800wi


The time-lapse “movie” of Pluto and its largest moon, Charon, below was recently shot at record-setting distances with the Long-Range Reconnaissance Imager (LORRI) on NASA’s New Horizons spacecraft. The movie was made over about a week, from Jan. 25-31, 2015. It was taken as part of the mission’s second optical navigation (“OpNav”) campaign to better refine the locations of Pluto and Charon in preparation for the spacecraft’s close encounter with the small planet and its five moons on July 14, 2015.



Pluto and Charon were observed for an entire rotation of each body; a “day” on Pluto and Charon is 6.4 Earth days. The first of the images was taken when New Horizons was about 3 billion miles from Earth, but just 126 million miles (203 million kilometers) from Pluto—about 30% farther than Earth’s distance from the Sun. The last frame came 6½ days later, with New Horizons more than 5 million miles (8 million kilometers) closer.

The wobble easily visible in Pluto’s motion, as Charon orbits, is due to the gravity of Charon, about one-eighth as massive as Pluto and about the size of Texas.


Faint stars can be seen in background of these images. Each frame had an exposure time of one-tenth of a second, too short to see Pluto’s smaller, much fainter moons. New Horizons is still too far from Pluto and its moons to resolve surface features.


The time-lapse frames in this movie were magnified four times to make it easier to see Pluto and Charon orbit around their barycenter, a mutual point above Pluto’s surface where Pluto and Charon’s gravity cancels out – this is why Pluto appears to “wobble” in space. Charon orbits approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface.

Each frame had an exposure time of one-tenth of a second, too short to see Pluto’s smaller, much fainter moons.


"These images allow the New Horizons navigators to refine the positions of Pluto and Charon, and they have the additional benefit of allowing the mission scientists to study the variations in brightness of Pluto and Charon as they rotate, providing a preview of what to expect during the close encounter in July," says Alan Stern, the New Horizons principal investigator from the Southwest Research Institute in Boulder, Colorado.


If the icy surface of Pluto's giant moon Charon is cracked, analysis of the fractures could reveal if its interior was warm, perhaps warm enough to have maintained a subterranean ocean of liquid water, according to a 2012 NASA-funded study. Pluto, which was once considered a planet — resides in the Kuiper Belt, a vast collection of frozen objects that orbit our Sun about 30 to 50 astronomical units (AUs) away. One astronomical unit is the distance between the Earth and the Sun, about 150 million kilometers.


Pluto is an extremely distant world, orbiting the sun more than 29 times farther than Earth. With a surface temperature estimated to be about 380 degrees below zero Fahrenheit (around minus 229 degrees Celsius), the environment at Pluto is far too cold to allow liquid water on its surface. Pluto's moons are in the same frigid environment.


"Our model predicts different fracture patterns on the surface of Charon depending on the thickness of its surface ice, the structure of the moon's interior and how easily it deforms, and how its orbit evolved," said Alyssa Rhoden of NASA's Goddard Space Flight Center in Greenbelt, Maryland. "By comparing the actual New Horizons observations of Charon to the various predictions, we can see what fits best and discover if Charon could have had a subsurface ocean in its past, driven by high eccentricity." Rhoden is lead author of a paper on this research now available online in the journal Icarus.


Some moons around the gas giant planets in the outer solar system have cracked surfaces with evidence for ocean interiors – Jupiter's moon Europa and Saturn's moon Enceladus are two examples.


Although temperatures on Pluto's surface hover around -230 °C, but researchers have long wondered whether the dwarf planet might boast enough internal heat to sustain a liquid ocean under its icy exterior.





No comments:

Post a Comment

About Me

Designed ByBlogger Templates