Star formation takes place in cold, dense molecular clouds. By heating and dispersing gas that could one day make stars, the black-hole wind forever alters a large portion of its galaxy. By combining observations from the Japan-led Suzaku X-ray satellite and the European Space Agency's infrared Herschel Space Observatory, scientists have connected a fierce "wind" produced near a galaxy's monster black hole to an outward torrent of cold gas a thousand light-years across. The finding validates a long-suspected feedback mechanism enabling a supermassive black hole to influence the evolution of its host galaxy.
In a study published in the March 26 edition of Nature, Tombesi and his team report the connection in a galaxy known as IRAS F11119+3257, or F11119 for short. The galaxy is so distant, its light has been traveling to us for 2.3 billion years, or about half the present age of our solar system.
Like most galaxies, including our own Milky Way, F11119 hosts a supersized black hole, one estimated at 16 million times the sun's mass. The black hole's activity is fueled by a rotating collection of gas called an accretion disk, which is some hundreds of times the size of our planetary system. Closest to the black hole, the orbiting matter reaches temperatures of millions of degrees and is largely responsible for the galaxy's enormous energy output, which exceeds the sun's by more than a trillion times. The galaxy is heavily enshrouded by dust, so most of this emission reaches us in the form of infrared light
The new findings resolve a long-standing puzzle. Galaxies show a correlation between the mass of their central black holes and stellar properties across a much larger region called the galactic bulge. Galaxies with more massive black holes usually possess bulges with proportionately greater stellar mass and faster-moving stars.
The image below is a red-filter image of IRAS F11119+3257 (inset) from the University of Hawaii's 2.2-meter telescope shows faint features that may be tidal debris, a sign of a galaxy merger. Background: A wider view of the region from the Sloan Digital Sky Survey.
Black holes grow the same way their host galaxies do, by colliding and merging with their neighbors. But mergers disrupt galaxies, which leads to greatly enhanced star formation and sends a flood of gas toward the merged black hole. The process should scramble any simple relationship between the black hole's growth and the galaxy's evolution, yet it doesn't.
"These connections suggested the black hole was providing some form of feedback that modulated star formation in the wider galaxy, but it was difficult to see how," said team member Sylvain Veilleux, an astronomy professor at UMCP. "With the discovery of powerful molecular outflows of cold gas in galaxies with active black holes, we began to uncover the connection."
In 2013, Veilleux led a search for these outflows in a sample of active galaxies using the Herschel Space Observatory. In F11119, the researchers identified a strong outflow of hydroxyl molecules moving at about 2 million mph (3 million kph). Other studies using different trace molecules found similar flows.
In the present study, Tombesi, Veilleux and their colleagues estimate that this outflow operates up to 1,000 light-years from the galaxy's center and calculate that it removes enough gas to make 800 copies of our sun.
In May 2013, the team observed F11119 using Suzaku's X-ray Imaging Spectrometer, obtaining an effective exposure of nearly three days. The galaxy's spectrum indicates that X-ray-absorbing gas is racing outward from the innermost accretion disk at 170 million mph (270 million kph), or about a quarter the speed of light. The region is possibly half a billion miles (800 million km) from the brink of the black hole, and about as close to the point where not even light can escape as Jupiter is from the sun.
"The black hole is ingesting gas as fast as it can and is tremendously heating the accretion disk, allowing it to produce about 80 percent of the energy this galaxy emits," said co-author Marcio Meléndez, a research associate at UMCP. "But the disk is so luminous some of the gas accelerates away from it, creating the X-ray wind we observe."
Taken together, the disk wind and the molecular outflow complete the picture of black-hole feedback. The black-hole wind sets cold gas and dust into motion, giving rise to the molecular outflow. It also heats dust enshrouding the galaxy, leading to the formation of an outward-moving shock wave that sweeps away additional gas and dust.
When the black hole shines at its brightest, the researchers say, it's also effectively pushing away the dinner plate, clearing gas and dust from the galaxy's central regions and shutting down star formation there. Once the dust has been cleared out, shorter-wavelength light from the disk can escape more easily.
Scientists think ultra-luminous infrared galaxies like F11119 represent an early phase in the evolution of quasars, a type of black-hole-powered galaxy with extreme luminosity across a broad wavelength range. According to this picture, the black hole will eventually consume its surrounding gas and gradually end its spectacular activity. As it does so, it will evolve from a quasar to a gas-poor galaxy with a relatively low level of star formation.
The image at the top of the page shows the black hole at the center of the super giant elliptical galaxy M87 in cluster Virgo fifty million light-years away, believed to be the most massive black hole for which a precise mass has been measured -6.6 billion solar masses. Orbiting the galaxy is an abnormally large population of about 12,000 globular clusters, compared to 150-200 globular clusters orbiting the Milky Way. Scientists theorized that the M87 black hole grew to its massive size by merging with several other black holes. M87 is the largest, most massive galaxy in the nearby universe, and is thought to have been formed by the merging of 100 or so smaller galaxies. The M87 black hole’s large size and relative proximity, astronomers think that it could be the first black hole that they could actually “see.”
No comments:
Post a Comment